Introduction¶
AlexNet是由Alex Krizhevsky、Ilya Sutskever和Geoffrey Hinton在2012年ImageNet图像分类竞赛中提出的一种经典的卷积神经网络。当时,AlexNet在 ImageNet 大规模视觉识别竞赛中取得了优异的成绩,把深度学习模型在比赛中的正确率提升到一个前所未有的高度。因此,它的出现对深度学习发展具有里程碑式的意义。
AlexNet基本结构¶
AlexNet输入为RGB三通道的224 × 224 × 3大小的图像(也可填充为227 × 227 × 3 )。AlexNet 共包含5 个卷积层(包含3个池化)和 3 个全连接层。其中,每个卷积层都包含卷积核、偏置项、ReLU激活函数和局部响应归一化(LRN)模块。第1、2、5个卷积层后面都跟着一个最大池化层,后三个层为全连接层。最终输出层为softmax,将网络输出转化为概率值,用于预测图像的类别。
卷积+池化层(前五层)¶
AlexNet共有五个卷积层,每个卷积层都包含卷积核、偏置项、ReLU激活函数和局部响应归一化(LRN)模块。
卷积层C1:使用96个核对224 × 224 × 3的输入图像进行滤波,卷积核大小为11 × 11 × 3,步长为4。将一对55×55×48的特征图分别放入ReLU激活函数,生成激活图。激活后的图像进行最大池化,size为3×3,stride为2,池化后的特征图size为27×27×48(一对)。池化后进行LRN处理。
卷积层C2:使用卷积层C1的输出(响应归一化和池化)作为输入,并使用256个卷积核进行滤波,核大小为5 × 5 × 48。
卷积层C3:有384个核,核大小为3 × 3 × 256,与卷积层C2的输出(归一化的,池化的)相连。
卷积层C4:有384个核,核大小为3 × 3 × 192。
卷积层C5:有256个核,核大小为3 × 3 × 192。卷积层C5与C3、C4层相比多了个池化,池化核size同样为3×3,stride为2。
其中,卷积层C3、C4、C5互相连接,中间没有接入池化层或归一化层。
全连接层(后三层)¶
全连接层F6:因为是全连接层,卷积核size为6×6×256,4096个卷积核生成4096个特征图,尺寸为1×1。然后放入ReLU函数、Dropout处理。值得注意的是AlexNet使用了Dropout层,以减少过拟合现象的发生。
全连接层F7:同F6层。
全连接层F8:最后一层全连接层的输出是1000维softmax的输入,softmax会产生1000个类别预测的值。
AlexNet创新点¶
更深的神经网络结构¶
AlexNet 是首个真正意义上的深度卷积神经网络,它的深度达到了当时先前神经网络的数倍。通过增加网络深度,AlexNet 能够更好地学习数据集的特征,从而提高了图像分类的精度。
ReLU激活函数的使用¶
AlexNet 首次使用了修正线性单元(ReLU)这一非线性激活函数。
优点:
- 解决梯度消失
- 加快收敛
缺点:
- 可能造成神经元死亡
局部响应归一化(LRN)的使用¶
LRN是在卷积层和池化层之间添加的一种归一化操作。在卷积层中,每个卷积核都对应一个特征图(feature map),LRN就是对这些特征图进行归一化。具体来说,对于每个特征图上的每个位置,计算该位置周围的像素的平方和,然后将当前位置的像素值除以这个和。计算过程可以用以下公式表示:
LRN本质是抑制邻近神经元的响应,从而增强了神经元的较大响应。这种技术在一定程度上能够避免过拟合,并提高网络的泛化能力。
数据增强和Dropout¶
由于参数过多,所以很容易对训练集过拟合,为了防止过拟合,AlexNet 引入了数据增强和 Dropout 技术。
Data Argumentation¶
数据增强可以通过对图像进行旋转、翻转、裁剪等变换,增加训练数据的多样性,提高模型的泛化能力。人为增多数据集,下采样后256x256的图片选出224x224作为输入,因此可以图像平移与水平翻转,从而得到32x32x2=2048张图片改变图像强度,进行主成分分析PCA,然后将主成分加倍.
Dropout¶
是神经网络中比较常用的抑制过拟合的方法。在神经网络中Dropout通过修改神经网络本身结构来实现,对于某一层的神经元,通过定义的概率将神经元置为0,这个神经元就不参与前向和后向传播,就如同在网络中被删除了一样,同时保持输入层与输出层神经元的个数不变,然后按照神经网络的学习方法进行参数更新。在下一次迭代中,又重新随机删除一些神经元(置为0),直至训练结束,这样可以使模型泛化性更强,因为它不会太依赖某些局部的特征。
大规模分布式训练¶
AlexNet在使用GPU进行训练时,可将卷积层和全连接层分别放到不同的GPU上进行并行计算,从而大大加快了训练速度。像这种大规模 GPU 集群进行分布式训练的方法在后来的深度学习中也得到了广泛的应用。